Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aziz Alaoui Tahiri, ${ }^{\text {a }}$ Rachid Ouarsal, ${ }^{\text {a }}$ Mohammed Lachkar, ${ }^{\text {a }}$ Brahim EI Bali ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratoire des Matériaux et Protection de l'Environnement, Département de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fès, Morocco, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, 60439
Frankfurt/Main, Germany
Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.001 \AA$
R factor $=0.024$
$w R$ factor $=0.061$
Data-to-parameter ratio $=19.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Cobalt potassium dihydrogendiphosphate dihydrate, $\mathrm{CoK}_{2}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}$

The crystal structure of the title compound, $\mathrm{CoK}_{2}\left(\mathrm{H}_{2}-\right.$ $\left.\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is, to our knowledge, the first example of a mixed-metal dihydrogendiphosphate, containing an alkali earth metal and a divalent transition metal. The metal ions and the two water O atoms are located on a crystallographic mirror plane.

Comment

The crystal structure of the title compound, $\mathrm{CoK}_{2}\left(\mathrm{H}_{2}-\right.$ $\left.\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is, to our knowledge, the first example of a mixed-metal dihydrogendiphosphate, containing an alkali earth metal and a divalent transition metal. The metal ions and the two water O atoms are located on a crystallographic mirror plane. The Co^{2+} ions are octahedrally coordinated. Whereas one of the K^{+}ions (K1) is bonded to seven O atoms, the other (K2) makes eight bonds to O atoms.

Experimental

Crystals were prepared by dissolving an equimolar amount of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a solution made of $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ in distilled water. The mixture was stirred for 1 d and the resulting light-pink solution was allowed to stand at room temperature. After two to three weeks, pink crystals deposited; they were filtered off and washed with an aqueous solution.

Crystal data

$\left[\mathrm{CoK}_{2}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=525.07$
Orthorhombic, Pnma
$a=9.7044(5) \AA$
$b=11.0023(6) \AA$
$c=13.3937(8) \AA$
$V=1430.05(14) \AA^{3}$
$Z=4$
$D_{x}=2.439 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS II two-circle
diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing,
1995)
$T_{\text {min }}=0.630, T_{\text {max }}=0.819$
24419 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.061$
$S=1.03$
2441 reflections
128 parameters
All H -atom parameters refined

Mo $K \alpha$ radiation

Cell parameters from 28672 reflections
$\theta=3.6-31.3^{\circ}$
$\mu=2.32 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, light pink
$0.22 \times 0.18 \times 0.09 \mathrm{~mm}$

$$
\begin{aligned}
& 2441 \text { independent reflections } \\
& 2173 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.049 \\
& \theta_{\max }=31.4^{\circ} \\
& h=-11 \rightarrow 14 \\
& k=-16 \rightarrow 16 \\
& l=-19 \rightarrow 19
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0413 P)^{2}\right. \\
& \quad+0.057 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}
\end{aligned}
$$

Received 29 August 2002

Accepted 5 September 2002
Online 20 September 2002

inorganic papers

Table 1
Selected geometric parameters (\AA).

Co1-O6	$2.0883(10)$	K1-O9	
Co1ii	$2.9636(16)$		
Co1-O2	$2.0926(10)$	K2-O5	$2.7007(10)$
Co1-O8	$2.1018(14)$	K2-O2	$2.8149(10)$
K1-O3	iv	$2.9951(17)$	
K1-O1 $^{\text {in }}$	$2.1537(15)$	K2-O8 $^{\text {iv }}$	$3.0239(12)$
K1-O6 $^{\text {ii }}$	$2.6975(11)$	K2-O6 $^{\text {v }}$	$3.2827(17)$

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, z-\frac{1}{2}$; (iii) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$; (iv) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (v) $-x, y-\frac{1}{2}, 1-z$; (vi) $-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots{ }^{\text {\% }}{ }^{\text {i }}$	0.78 (3)	1.76 (3)	2.5272 (15)	170 (4)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {ii }}$	0.76 (3)	1.74 (3)	2.4996 (15)	176 (3)
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {iii }}$	0.81 (3)	2.07 (3)	2.8255 (17)	156 (3)
$\mathrm{O} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iv }}$	0.85 (3)	1.92 (3)	2.7669 (14)	175 (3)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}-z$; (iv) $1-x, \frac{1}{2}+y, 1-z$.

All H atoms could be located in a difference Fourier synthesis and were refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

BEB thanks Professor R. Glaum, University of Bonn (Germany), for his support.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Figure 1
Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operators for generating equivalent atoms: (i) $x, \frac{1}{2}-y, z$; (ii) $x, \frac{3}{2}-y, z$; (iii) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (iv) $-\frac{1}{2}+x, 1-y,-\frac{1}{2}+z$; (v) $\frac{1}{2}-x,-\frac{1}{2}+y,-\frac{1}{2}+z$; (vi) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$; (vii) $-x,-\frac{1}{2}+y, 1-z$; (viii) $-x, 1-y, 1-z$; (ix) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}+z ;(\mathrm{x}) \frac{1}{2}-x, 1-y, \frac{1}{2}+z$.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

